3.3.90 \(\int \frac {(a+\frac {b}{x})^n}{x^3 (c+d x)} \, dx\) [290]

Optimal. Leaf size=115 \[ \frac {(a c+b d) \left (a+\frac {b}{x}\right )^{1+n}}{b^2 c^2 (1+n)}-\frac {\left (a+\frac {b}{x}\right )^{2+n}}{b^2 c (2+n)}+\frac {d^2 \left (a+\frac {b}{x}\right )^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c^2 (a c-b d) (1+n)} \]

[Out]

(a*c+b*d)*(a+b/x)^(1+n)/b^2/c^2/(1+n)-(a+b/x)^(2+n)/b^2/c/(2+n)+d^2*(a+b/x)^(1+n)*hypergeom([1, 1+n],[2+n],c*(
a+b/x)/(a*c-b*d))/c^2/(a*c-b*d)/(1+n)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {528, 457, 90, 70} \begin {gather*} \frac {(a c+b d) \left (a+\frac {b}{x}\right )^{n+1}}{b^2 c^2 (n+1)}-\frac {\left (a+\frac {b}{x}\right )^{n+2}}{b^2 c (n+2)}+\frac {d^2 \left (a+\frac {b}{x}\right )^{n+1} \, _2F_1\left (1,n+1;n+2;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c^2 (n+1) (a c-b d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b/x)^n/(x^3*(c + d*x)),x]

[Out]

((a*c + b*d)*(a + b/x)^(1 + n))/(b^2*c^2*(1 + n)) - (a + b/x)^(2 + n)/(b^2*c*(2 + n)) + (d^2*(a + b/x)^(1 + n)
*Hypergeometric2F1[1, 1 + n, 2 + n, (c*(a + b/x))/(a*c - b*d)])/(c^2*(a*c - b*d)*(1 + n))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 528

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rubi steps

\begin {align*} \int \frac {\left (a+\frac {b}{x}\right )^n}{x^3 (c+d x)} \, dx &=\int \frac {\left (a+\frac {b}{x}\right )^n}{\left (d+\frac {c}{x}\right ) x^4} \, dx\\ &=-\text {Subst}\left (\int \frac {x^2 (a+b x)^n}{d+c x} \, dx,x,\frac {1}{x}\right )\\ &=-\text {Subst}\left (\int \left (\frac {(-a c-b d) (a+b x)^n}{b c^2}+\frac {(a+b x)^{1+n}}{b c}+\frac {d^2 (a+b x)^n}{c^2 (d+c x)}\right ) \, dx,x,\frac {1}{x}\right )\\ &=\frac {(a c+b d) \left (a+\frac {b}{x}\right )^{1+n}}{b^2 c^2 (1+n)}-\frac {\left (a+\frac {b}{x}\right )^{2+n}}{b^2 c (2+n)}-\frac {d^2 \text {Subst}\left (\int \frac {(a+b x)^n}{d+c x} \, dx,x,\frac {1}{x}\right )}{c^2}\\ &=\frac {(a c+b d) \left (a+\frac {b}{x}\right )^{1+n}}{b^2 c^2 (1+n)}-\frac {\left (a+\frac {b}{x}\right )^{2+n}}{b^2 c (2+n)}+\frac {d^2 \left (a+\frac {b}{x}\right )^{1+n} \, _2F_1\left (1,1+n;2+n;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )}{c^2 (a c-b d) (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 112, normalized size = 0.97 \begin {gather*} -\frac {\left (a+\frac {b}{x}\right )^n (b+a x) \left ((a c-b d) (-b c (1+n)+a c x+b d (2+n) x)+b^2 d^2 (2+n) x \, _2F_1\left (1,1+n;2+n;\frac {c \left (a+\frac {b}{x}\right )}{a c-b d}\right )\right )}{b^2 c^2 (-a c+b d) (1+n) (2+n) x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x)^n/(x^3*(c + d*x)),x]

[Out]

-(((a + b/x)^n*(b + a*x)*((a*c - b*d)*(-(b*c*(1 + n)) + a*c*x + b*d*(2 + n)*x) + b^2*d^2*(2 + n)*x*Hypergeomet
ric2F1[1, 1 + n, 2 + n, (c*(a + b/x))/(a*c - b*d)]))/(b^2*c^2*(-(a*c) + b*d)*(1 + n)*(2 + n)*x^2))

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\left (a +\frac {b}{x}\right )^{n}}{x^{3} \left (d x +c \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+1/x*b)^n/x^3/(d*x+c),x)

[Out]

int((a+1/x*b)^n/x^3/(d*x+c),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^3/(d*x+c),x, algorithm="maxima")

[Out]

integrate((a + b/x)^n/((d*x + c)*x^3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^3/(d*x+c),x, algorithm="fricas")

[Out]

integral(((a*x + b)/x)^n/(d*x^4 + c*x^3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + \frac {b}{x}\right )^{n}}{x^{3} \left (c + d x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)**n/x**3/(d*x+c),x)

[Out]

Integral((a + b/x)**n/(x**3*(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^n/x^3/(d*x+c),x, algorithm="giac")

[Out]

integrate((a + b/x)^n/((d*x + c)*x^3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {b}{x}\right )}^n}{x^3\,\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/x)^n/(x^3*(c + d*x)),x)

[Out]

int((a + b/x)^n/(x^3*(c + d*x)), x)

________________________________________________________________________________________